
Theoret. Chim. Acta (Berl.) 58, 193-231 (1981) 
THEORETICA CHIMICA ACTA 

�9 Springer-Verlag 1981 

Spectral Analysis of Graphs by Cyclic Automorphism 
Subgroups* 

Robert A. Davidson 

Contribution No. 2780 from the Central Research and Development Department, Experimental 
Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898, USA 

The theory of spectral decomposition modulo subgroups of the graph 
automorphism group is extended to cyclic configurations of arbitrary rota- 
tional order. By regarding graphs with cyclic automorphisms as composite 
polymers of relatively simple monomeric structural units, it is shown that the 
spectrum of eigenvalues of many prominent molecular and nonmolecular 
families devolves to consideration of a single monomer-derived reduction 
network. As the only parameter associated with this network is the set of 
simple circuit eigenvalues, a direct connection is forged between the spectrum 
of a circuit and the spectrum of any cyclic array of the same periodicity. 

In addition to simplifying determination of individual graph spectra, the role 
of the automorphism reduction network in organizing and uniting disparate 
aspects of spectral theory is stressed. Systems sharing a subspectrum of 
identical eigenvalues are readily recognized from the graphic nature of 
networks. As previously, symbolic and notational devices are devised for 
greatest economy in the spectral analysis. 

1. Introduction 

This series of papers, "Unified Theory of Graph Spectral Reduction Networks," 
[1-3] develops a new body of methodology for the analysis and computation of 
graph eigenvalue spectra. The decomposition of graphs into various types of 
simpler networks whose spectra directly relate to the spectrum of the composite 
graph represents to our thinking a fundamental and obvious approach to the 
unraveling of complex structure-spectral relationships. We have observed that 
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correlations of this kind are familiar in the context of molecular spectroscopy. 
Many examples have been put forward in developing the notion of graph families 
whose members share common spectral characteristics. The theme of structurally 
diverse graphs sharing a subset of identical eigenvalues is developed further here. 
It will be demonstrated that restricted consideration of ~r-graphs of conjugated 
hydrocarbons is necessarily unproductive, since analysis of this class frequently 
entails structures of a more general type. 

The previous two contributions [2, 3] addressed the problem of graph spectral 
decomposition with respect to cyclic automorphism subgroups of order two. 
Under these groups, graphs subduce symmetric and antisymmetric reduction 
networks whose form is immediately evident from elementary group theoretic 
concepts. In many cases we were content not to call fully upon the high symmetry 
of a graph for spectral reduction. The resultant inefficiency is remedied now by 
undertaking reduction with respect to cyclic subgroups Zn of order greater than 
two. Our aim is to show how graphs of arbitrary size can be regarded as 
cyc lopo lymers  of small and fairly simple monomer generating units. Thus, all 
eigenvalues of coronene and the infinite family of its higher and lower congeners 
derive from the complex edge, four vertex, directed network and characteristic 

- t  

n = 6 ' .n , t  

E t = e2~rit/n 

= 

~b --- A 4 -  A3At - 4A 2 + 2AAt 

+ (A 2 + 1) 

polynomial shown above. Since the only parameter is An,t, all cyclopolymeric 
structures possess spectra determined by the eigenvalues of simple circuits. This 
fact will permit simple, consistent derivation of exact formulas for the spectra of 
many prominent homologous graph series. Minor modification of cycle spectra 
reveals hitherto unforseen interrelations between their derivatives' spectra. 

In this area of spectral graph theory as in many others, we call to the reader's 
attention the precocious observations of Heilbronner [4]. His insights on cyclic 
7r-graphs are extended here to more general graphical structures. Chinese 
workers have recently become interested in the molecular orbital problem, also 
[5-7]. 

2. Terminology; Z~ Automorphism Reduction 

The terminology and notation of graph spectral theory have been developed in 
earlier papers. A graph G of order p is a set V = {vl,/32 . . . . .  /3p} of vertices and a 
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set of edges E = {vivj} consisting of two-sets of vertices. A network N is a directed, 
loop-containing graph whose edges are weighted by complex numbers, w: E -~ C. 
Previously, only real, arc-symmetric weights were encountered.  For Z~, n --- 3 
automorphism reduction certain pairs of opposite arcs bear weights which 
are mutually conjugate over C. The adjacency matrix of these networks 
exhibits hermitian symmetry, (A t )* (N)=A(N) .  The spectrum 5 e of a graph 
or network is the set of eigenvalues of its characteristic equation, &(N; A)= 

= 0 .  

The (full) automorphism group of a graph or network, F~ = {~/i}, is the set of 
adjacency and edge-weight preserving isomorphisms of the structure, represented 
by permutations, F ~  < Sp. Generally, an abstract group isomorphic to F < F ~ is 
symbolized by ~ = {gl}. Cyclic permutation (sub)groups of S o of order n are as 
usual denoted by Cn, and their abstract isomorphs by Zn, Zn ~ Cn. A F-orbit Oi of 
G or N is a maximal set of vertices equivalent by automorphisms of F. 

It has been shown that every network or graph determines a unitary vector space 
~ ( N )  spanned by the vertex set V(N)  = ~0.  The linear adjacency operator  A on 

maps vertices of N to their neighbors according to Avj = Y~v, adi ~j oJ(eij)vl. The 
ordinary adjacency matrix A ~ = <vil~ilv;> = ~ 0  is just the matrix representation of 
the operator  A in the standard orthonormal basis. To simplify the graph eigen- 
value problem, the Frobenius-Schur theory of group representations is sum- 
moned [8-11]. By well-known principles, the carrier space/ / ' (G)  of a graph with 
nontrivial automorphisms admits decomposition into a direct sum of subspaces 
associated with the group irreducible representations (IR). The irreducible 
subspaces are stable under group operations and are mutually orthogonal. 

A basis ~3 of 7/" adapted to an abelian cyclic subgroup Z ,  -< ~d ~ of the graph is 
formulated with particular ease since the irreducible representations are one- 
dimensional and so coincide with the primitive characters [4, 12, 13]. If g is a 
generator of the cyclic group Zn = {gO = gn = / ,  gl, g2 . . . . .  g~-l}, the characters of 
Z ,  in the t th irreducible representation are given by the n n th roots of unity: 
{x t (gk )=e21r ik t /n  = k t } = { 1 ,  t, e2t . . . . .  E(n-1)t}. 

Using the orthogonality relation we can show that the sum of cyclic group 
characters is nonzero only for the t = 0, totally symmetric, representation: 

n-1 n, t = 0  
E xt(gk) = 

k=0 0, t ~ 0" 

The transformed basis adapted to Z~ is obtained by projecting into the t th 

irreducible subspace with the idempotent operator  

e t :  Ptvi  = ui ~- x t ( g k ) g  k Vi. 
k=O 

Normalization is effected by noting that F ~ Z .  orbits are either of cardinal n or 
cardinal 1 (for permutationally invariant vertices). The major task ahead is that of 
developing simple rules for the graphical expression of matrix elements (uil~lu,> 



196 R . A .  Davidson 

between orbit representative vertices in the new basis. We commence by examin- 
ing the fundamental properties of simple circuit graphs. 

2.1.  Circui t  Graphs ,  G = C ,  

Since circuit graphs have only one orbit of cardinal n, the orthonormal basis ~ ,  for 
the tth subspace is 

P, von -1/2 Y~ Ektgkvo = n -1/2 Y ek~vk = U ~ 
k=O k 

and a single matrix element yields the full graph spectrum. 

v 0 Vn-l~ 
Vn-21 ] v 2  

Vn_ 3 ~ . ~ - - "  v 3 
v 4 

G = C  
i"1 

h,.t  = 2 cos 2 z r t / n  

0 

A.,,--- <u">lAlu">> = ( n  - 1 / 2  ~ �9 -1/2 Z �9 (1) 
k k 

= n - I ( E  �9 k'l) k JE �9 kt(Vk+X + Vk-1)> (2)  

= n - 1 ( 2  �9 ]Z ( E'(k-1)t -]- �9 (3)  

= n - l [ n ( e - t  + �9 (4) 

A,,t = 2 cos 2rr t /n  0 <- t <- n - 1. 

Line (2) follows from the adjacency of Vk+l and Vk-1 to Vk, line (3) simplifies 
subsequent evaluation of the hermitian inner product (modulo n counting is to be 
understood), and line (4) utilizes 

(d'vj[�9 = e -#. ~'(vilvk> = �9 
The reduction network is just a vertex of loop weight An,t; when circuits occur in 
supergraphs, a looped vertex appears as an element of the full ARN (automor- 
phism reduction network). 

Fig. 1 presents the eigenlevel diagrams (ELD) for the leading series members. 
States are cyclically labeled by the IR index (t); note that (t) and ( n - t )  pairs 
comprise doubly degenerate levels. Under the full group Dr the representation 
~o  reduces according t o  ~)~ "+E(n-2)/2 (n even), ~ o =  
A 1 + E1 +" " " + E(n-1)/2 (n odd). The totally symmetric A 1, t = 0 state with A,,0 = 2 
is common to all cycles, and other cosubspectral relations may be deduced from 
the cosine formula. 
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Xn/2 : - 2  

(1) - - ( 2 ) E  

Xn/4 (1) 
X3n/4 : 0 

Xo:+2 - - ( O )  A 1 

C3 

- - I ( 2 )  B| 

(3) E 

- - ( O ) A ~  

C4 

(2) -- 

( 1 ) - -  

(3) E 2 

(4) E I 

- - ( O )  A] 

C5 
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)" n/2 = - 2  - - ( 3 ) B  I (3) - - ( 4 ) E  3 

( 2 ) - -  -- 14)E2 ( 2 ) - -  

Xn/4 
X3n/4 =0 

( l ) - -  --(5)El (1) -- 

ko=+2 - - ( O ) A ]  

C6 

Fig. 1. ELD's of small circuit graphs 

- - ( 5 ) E  z 

- -  (6)  E 1 

(O)A~ 

C7 

2.2. General Network Edge Weights 

We proceed to consider various other types of graphical substructures and their 
formulation in the Fz , -adapted  basis. Interorbit matrix elements are undertaken 
first. 

(1) Invariant vertex orbits 

Invariant vertices comprise orbits of cardinal one and appear only in the A1 
network. Suppose cyclic orbit 0 i = i i {V0, V il,.. . ,  Vn_l}is adjacent to one or more of 
the invariant vertices. In the reduction network, edges of weight n 1/2 

i i i 
v_ v~ vo i 

0 . . . . .  _ V 3  & . /1 1/2 

~,, 

t = O  

0 
r i l l  2 

kJ  

t # O  

<vlAIv>=o <vIA[~'>= 1 <v'l~l~">= o < t=o )  
^ ( t ) ~  <viA ~, , = n-~/~<"[AI L'~ ~ ~v~i" = n-X/~ ~: ~'<vlv> 

=n_1/2~, kt=n +1/2, t - O  
O, t # O  
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join a vertex representing an orbit  O~, [O~[ = n, to adjacent, fixed, vertices when 
t = 0. The case of n -- 2 was examined in an earlier repor t  [3]. While details of the 
(u ~t)IAlv > calculation differ somewhat,  the final result is necessarily identical. Note  
also that vertices which do not influence the particular interaction under  consi- 
deration (e.g. other vertices adjacent  to {v ~}) are omit ted from the calculation. 

(2) Adjacent  orbits of order n 

. 

v 0 - ~ .... -~_ v 3 .,''- ~ / --", 3 

(a )  -" ~v _vf__.I:_../" - 
"" 0 I v 2 v 3 "- 

A t E VklAl~ E%~> 
- l z x ~  k t  i I ~  I~--1 

It is assumed above that the only Oi, Oi interaction is of the sort shown, but many 
other possibilities present themselves. 

J J 
�9 V_l v2 3" 

V~- - ---- V 

~ _-'~4- ~--xq_ \ I "> e-t e+t 

v 0 v I v 2 v 3 -. 

(t) ^ (t) _ - 1  kt  i ^ <u, IAluj >- n <E ~ vk lAZ  ~%k> 
--ll'c ~ kt i Iw'~ = n  ~2.,~ VklL~ktV~+:> 
- - 1 1 ~  kt  i Iv" f f ( k - 1 ) t v ~  ) 

= n  ~Le Vkl2., 
._~ n - 1  ~ ,  ~ - k t E ( k - 1 ) t  

- t  

(t) ^ (t) _ - 1  kt  j j E ( k + l ) t v J k )  <uj IAlui >-n <YE vklE 
+t : E  

�9 �9 i ] 
This case supposes that a vertex v~ of Oi in the designated umt {vq, vq} is adjacent 
to a vertex v~-~ of 0 i in the clockwise preceding unit�9 If the order of connection is 
reversed, the directed subnetwork edge weights are t ransformed to their complex 
conjugates, i.e. 

j j 
v ~ . . . .  z v 3 

n i z "-.k" 

v 0 I z v 3 
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(t) ~ (t) - l # r ,  kt  i Iv, E ( k + l ) t v k >  +t 
Ui  ,/-.l_ U j  > =  : E  n t L  e Vk l  2 

Next, the combined effects of orbit interaction types (a) and (b) are explored. 

J j 
j V V �9 

v^ i 2 .J 
U.---~ . . . .  7 t - - _  v 3 

(t) l ~ l  ( t ) ~  - - l /T-  kt i Iv" ktz  i i xx 
ui I~lUs ) - n  tLE VklY.e I.Dk-I-Vk-1)) 

- - l / v ,  kt i Ix-, f f ( k + l ) t ~ v i  
= n t L  e Vkl2., (e kt + ) k) 

= l + e  t. 

Now suppose that vertices v~ are connected to both Vq-1 ] and/Jq+l.] 

�9 �9 o 

(d) �9 Xn, t 

v 0 I z ~ v 4 

<ul '> IAIu~')> = n - l (  ~'[ ~%~IE ( ~ - "  + ~ ( k + l ) t ) V k >  

= e - t  -4- e +t = An,  t. 

When vertices Viq are adjacent to s vq+x in more remote monomer units, the matrix 
elements are calculated in an entirely analogous fashion. 

�9 V j �9 vJ_" 2 j 

; 2t 0 -2t 
-r i I -. 

- ~ v I v v 2 v I [- 
0 1 3 v4 

Obviously, many combinations of these fundamental interaction types will occur 
in arbitrary graphs. 

(3) Intraorbit calculation 

A circuit subgraph of cyclically equivalent vertices reduces to a looped vertex of 
weight A.,. If the adjacent, equivalent vertices reside in monomers removed by x 
units, the loop weight is determined as follows. 
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i i 
i v2 ~ i Vx i 

V o ~  ~jx+2 ) 0 Xn, x t  

ui I,~lUi ?=n t L � 9  VglL 

= �9 + �9 = 2 cos 21rxt/n = A,,xt 

Implicit in the above is that edges e k,k-~ and e k,k +x are distinct. Special attention is 
accorded the degenerate situation when these edges are identical. 

i 
v 0 i i 

i [" "N~/" ', i ~ (_l)t 
(g) Vn/2+T, //~ ~ v2 > Q 

i '/ I ~,i 
v/2+l-'- ~. "'v3 

Vn/2 

( l i  l t ) ix~li l U l t) ) = fl--l(~-' E k t ij ik i l~li i y ~, ~ kt lj ik > 

- - l l w  kt i Iv'~ kt i 
= n ~,~ �9 1)kl2~ �9 V k - ( n l 2 ) )  

- l l v  ~ kt i v~ = n ~2.~ �9 V k  2.~ � 9  

= � 9  = ( - 1 ) '  

Evidently, a loop of weight ( -1)  t is associated with this structural feature. It 
remains for us to demonstrate how these individual elements combine and 
interact to afford the reduction networks of full graphs. 

2.3. Applications to Cyclopolymeric Graphs 

Graphs with cyclic automorphism subgroups may be regarded for purposes of 
spectral analysis as polymers of fundamental monomeric building units. The 
repeat  subgraph ("unit cell", "motif")  is assembled into cyclically periodic arrays 
which we call cyclopolymers, or cyclomers. It is the structure of the monomer  and 
the mode of its connection to succeeding units which will determine the spectrum 
of the total array. This conception can greatly simplify many large and complex 
graph eigenvalue problems, and establish insights at a fundamental level into the 
spectral affinity of graphs otherwise viewed in isolation. The component  reduc- 
tions of the foregoing section are now concatenated into complete reduction 
networks of graphs. Various aspects of the reduction process are surveyed prior to 
a more detailed study of selected structures. 

We first observe that graphs of certain forms may be representative of general 
classes of structures (homologous families) whose members are related by defined 
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rules of elaboration. When symmetry or structural singularities are absent from 
such a series, it is obviously advantageous to formulate the reduction network, its 
characteristic polynomial and possibly the spectrum itself in the most general 
terms. As an example let us obtain the spectrum of the pyramid or wheel graph, 
Wn = Cn + K1. There is in fact nothing essential remaining to compute or reason 
over, since the wheel structure and our development of cyclic group represen- 
tations allows us to write N(Wn) by inspection. A point is taken from each Fz. 

W 5 W 6 N(W) A I (t=0) t~0 

~o :D 5 ~o :~6 
~P (NAI) =~2 -2% -n 

~9 ~ (NAI) : {l_+(n+l) I/2} 

orbit to form the basic monomer  subgraph, whose adjacency with following units 
is scrutinized. In this case the circuit reduces to a looped vertex of weight An.t, 
which is joined to the fixed vertex in the t = 0 IR by an edge of weight n 1/2. The 
distinction between t = 0 and t # 0 is made explicit above, and this affords a simple 
expression for all wheel eigenvalues [14, 15]. All but two of these are roots of the 
peripheral cycle, which explains our unconventional definition of the graph. In 
similar fashion the spectrum of a bipyramidal graph Cn +2K1 = Cn +K2 is {1 + 
(2n +1)  1/2, 0, A n,t~o}. A homologous series in the invariant vertices is also 
suggested. The reduction network immediately tells us that members of the latter 
family with fixed n are cosubspectral in the circuit eigenvalues. 

The family of graphs consisting of an n- ring surrounded by n ortho-fused 6-rings 
to which the prominent molecule coronene belongs was noted in the introduction. 
See Fig. 2. The repetition motif of a cyclomer generally admits of a multiplicity of 
representations, all of which are, however, cospectral. To avoid needless compli- 
cation our monomer  subgraphs will always be connected. Even then, Fig. 2 
illustrates that several forms present themselves; any one of maximal symmetry 
(vide infra) may be utilized. The cospectral reduction networks N and N'  are 
abbreviated to show only the +t directed edge. Since hermitian matrices A and 
their adjoints A *t are cospectral, the direction of the edge weighted E t is arbitrary 
when only one such edge occurs. The general dinetwork N of Fig. 2 is asymmetric, 
but in the A1 representation pairs of conjugate directed edges collapse to a 
symmetric edge of weight one (e.g. (d)). The resultant symmetry enhancement 
occasions further automorphism reduction. 

Let  us correlate the reduction of coronene-type graphs under the full Dn group 
and under its normal subgroup Cn. For even n the D ,  IR multiplicities are 
(3A1 +A2) + (3B1 +B2) +4  v~,-2)/2 v(--a)/2 z..i=l El, and for odd n, (3A1+A2)+4z.i=1 Ei. 
By explicit calculation or the network order of four in Fig. 2 it is clear that single 
reduction by a cyclic subgroup is less complete than by the full automorphism 
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(a) IVl: 4n 
,~:Dn 

n,t ,t 

(b)N (b') N' 

Xn,t~ o 2 -2 Xn,tmo 
(c) (d) [e) (c') 

-1 +1 
+1o'/-2~ o2U 0 - lo ' / 'z ,  o - 2 U  O 

(f)(X3-3XZ-X+5) (X+I) (f')(X3 + 3X2-X-5) (N-l) 

Fig. 2. Reduction of coronene-like graphs 

(a') 

group. It has been noted, however, that the A1 network (d) from C, has a 
symmetry axis and further reduction (f) yields the result predicted from its D ,  
supergroup. Likewise, when n is even the IR t = n/2 yields a symmetric, negative 
edge network (e) whose reduction is again in conformity with D ,  expectations. It 
has been shown previously [2] that (f) and (f') are of necessity antispectral. It is 
expected generally that the nondegenerate  t -- 0 and t = n/2 levels of even circuits 
will correlate with cyclopolymer subspectra which are potentially reducible. All 
even coronene-family members therefore contain a subspectrum of eight com- 
mon eigenvalues, and all share the A1 subspectrum. Other spectral relations 
follow from the nature of the circuit eigenvalues. 

From the t - -0 ,  n/2 arc-symmetric networks we can easily account for cosub- 
spectral graphs which have no obvious structural similarity. Surprising and 
fascinating coreductions are plentiful; the A1 coronene-family network, for 
example, is also associated with the class of graphs shown below. Observe that full 
factorability is evident only from the N network of Fig. 2, not from its cospec- 
t ramer N' .  

> 
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.~~ : __.D n 

n=6:2Al+(BI+ B2)+ .~*:D n/2 
2E 1 + 2E z 

n =6:(2A l +A 2) + 3E 

X3-X(4+ ht)--(2 +h t ) 

kn,t 
(c) (d) 

( 2 A ] + A  2)+(2B1+ B 2) (2A 1+ 2A 2)+4E 
+3El + 3E 2 

Fig. 3. Irreducible representation multiplicity for two pairs of graphs 

X4-4X 2 + (2-X t ) 

The question arises whether Z ,  reduction will always ultimately provide the same 
degree of factorization as its higher precursors in the group lattice. We are inclined 
to believe that it will, though there may be exceptions in highly symmetric, e.g. 
transitive, graphs. It is just in these difficult situations, however, that the power 
and simplicity of our methods are fully realized. 

Fig. 3 investigates the reduction of two structurally similar pairs of graphs, (a), (b) 
and (c), (d). Under D,, all these graphs feature two orbits, and it might be 
suspected that second order networks result from all of them. This is neither 
confirmed by group theory nor evidenced by the reduction networks. We have 
nevertheless been intrigued by the possibility that the special conjugate weight 
relation of converse dinetwork edges could be utilized for "hermitian symmetric" 
and "hermitian antisymmetric" factoring of, for example, cyclic networks of the 

t__ -t__ 

following kind. At present we have no justification for such supersymmetry 
factoring. Reduction can be effected, however, on the basis of the bipartite 
character of even cycles, as we now discuss. 

Binetworks with complex edge weights are represented by hermitian adjacency 
matrices of the block structure shown. 
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The bipartite reduction network with squared eigenvalues Ai = A ~ is formed in the 
same manner  as for graphs, the difference being that network loop weights for 
vertices incident with complex weighted arcs entail the product  of conjugate arc 
weights rather  than their square [1]. Fig. 4 compares  the biparti te reduction of the 
o-, m- ,  and p-cyclopolyphenylenes.  For the ortho and para cases, it is shown that 
Z ,  reduction followed by biparti te reduction of the A R N  yields the same result as 

(a) ~, > s 1-~E-t ~ �9 2/)~'~-1+Et~ U +E t 
3 ~ I  +E-L 4 V a 3+Xn,t 2 

A3-A2(7+ ),q) + A (12+ 3Xt) 
_Dn -(5+2X0 

2 2 
~' 2 2 

2 > ,  3 + k n,t 

(b) 2 2 

s X s  
2 2 

-Dn _Dn/2 

2 2 

2 

Dn 
II 

J~(1 +E t ) h 
[ U L ~  > 3: ; --3 

Y ,,~ {3+-(4+2Xt) 1/2 } 

2 2 y  

3 

2 z z~3 § 

_Dn 

Fig. 4. Sequential automorphism-bipartite reduction of the ortho (a), meta (b), and para (c) 
cyclopolyphenylene graphs 
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Zn reduction of the BRN. (The meta family is peculiar in that odd members are 
nonbipartite, and the Zn ARN is also nonbipartite.) Sixth order matrices are 
predicted by group theory for degenerate IR's and bipartite reduction effectively 
lowers this order to three. The high symmetry of the para system enables a closed 
expression for squared eigenvalues. 

Table 1 offers a selection of typical cyclopolymers suggested by Hiickel molecular 
orbital applications [16, 17]. Their monomeric networks are reduced to the 
greatest possible extent for arbitrary IR's. As usual, the t = 0 case admits 
extraordinary reduction. The cyclacenes (a) are cyclic analogs of the common 
acene graphs. [4] Antisymmetric Z2 reduction of a [2n + 2]cyclacene yields an 
[n]acene, so these familes are cosubspectral. Care must be exercised in dealing 
with the larger-ring acene analogs (b) and graphs like (e), since despite 
appearances, their odd members are nonbipartite. Eigenvalues of the looped 
cycle (c) are given in closed form; we must recognize that n in this case and in (i) 
and (j) is the number of monomers and the total ring size is 2n. Bipartite reduction 
of simple circuits furnishes the relation A2(C2n)= A (C~)+2, so the expression 
stated in (c) is in conformity with that developed previously (Ref. 2, Appendix 
theorem 2). When to' = 0, (c) and (d) become Z2 reduction networks of graphs (a) 
and (b), respectively. 

The trivial eigenvalue formula for the radialenes in (g) may be contrasted with 
Cotton's lengthy discussion of this system [13]. The alternately methylenated ring 
in (i) is easily evaluated by observing that its BRN is an n-cycle of loop weight 
three. Radialenes are generalized by structure (k), which may be expressed by the 
corona operation Cn o inK1. The reduction network is a centrally looped star 
(Kl.m) whose further reduction yields the given spectrum. 

It should be borne in mind that the A1 state networks of many ~--hydrocarbon 
cyclomers are graphs of molecules which would otherwise be dismissed as without 
significance in the realm of ~r-electron theory. Previous studies and the present 
investigation demonstrate that, within the Hiickel context, distinction between zr 
and non-zr systems is not as rigid or meaningful as has long been assumed. This is 
to say that spectra of graphs traditionally understood as being associated with 
saturated molecules may well find themselves as subspectral networks of recog- 
nized and accepted conjugated structures. This point is emphasized in Fig. 5, 
where ~--graph (a) is correlated with the norbornene dimer (!), and the novel, 
recently synthesized Kekulene (b) [19] with tricyclo-[3.2.1.02"4]-octane. Rela- 
tionships such as these could never be appreciated or even imagined within the 
confines of molecular orbital theory. Since the reduction graph in, for example, 
(b), is related in other ways to a variety of superstructures, we have again 
spectrally "socialized" the benzenoid precursor. 

The characteristic polynomial of complex edge-weight dinetworks like that in (b) 
is evaluated in (b') by the directed form of the Harary-Sachs theorem, 

c~k = Y~ (-1) ~('~) [I to[e()qk)], 
~ e 
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where c is the number of components in an order k circuit subnetwork [3]. Fig. 5b' 
only summarizes the essentials of the calculation for k = 7. 

3. Topics in Automorphism Reduction 

3.1. Graphs with Invariant Vertices: Stars and Rotors 

Based upon the development of Sect. 2, we proceed to consider in more detail 
problems associated with invariant vertices. The graphs of Table 2 all have one or 
more fixed vertices, but the principal purpose is to examine the effect of relatively 
small structural elaborations on the spectrum of a constant subgraph ("frame") 

Table 1. Complete reduction of cyclopolymeric graphs 

Cyclopolymer Motif Z n ARN 

Cyclacene 

( j j '  tO t (jj~ 

(c) ~ 

to to to 

Cd) 

W to to to 

> ~ o _ . I  
~:{1/2 [+-] +-.(9+4Xt)1/2 ] ) 

X3 -~ Xz- 3x -Xt• 

OJ C ; , ~  (M I 

~: {V2 [(w § ((w-w')Z § 4(X t + 2))]/Z ]) 
t o ~  Wj 

W 

(f) 

Perphenylannulene 

�9 

~ X n , t  

+-1 
X3~-2 X2-2 X-  X t • 2 

Xn,t 
Xs-X 4 kt-6X3 + 5 k2 Xt 

+7X -4X t 
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Cyclopolymer Motif Z n ARN 

(g) I I I I  
Radialene 

(h) 

~  t 

,,~: {1/e [ ht+ ( h~ +4) 1/2] } 

ttt O , n ,  X3XZ 
- X t -  2X + X t 

Pervinylannulene 

(i, I I 1 
: : d:{+_(3 +• 

',) i ; t t  

(k) 

rn m m 

',V ~ ',1/ 

0)18 

1-- : (3+ kn, t ) 
AZ-A(4 + Xt) +(2+ h i )  

m 

" ~ n , t  
~:{I/2 [Xt+(k ~ + 4m)1/2],0m-1} 

2" 3 

2 

/~.3-8A2+ 16A- (5  + 2X t) 

shown below. Higher homologs appearing in (1) and (m) are necessary for 
particular features not demonstrable by the odd Z .  system. Different monomer 
subgraphs for the parent and their cospectral ARN's  are shown in (a)-(a"). 

acepentylene 
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(a) ) @ 

R. A. Davidson 

t=O> 2 ~  <~ '  

(b) 

Kekulene 

> :> 

~ ( N ) =  xS- lox6- - )~  Xt * 29X 4 + X3 (3Xt) 
-28XZ-X(2Xt) + (4 + X~) 

(b') 

a7=-2X t : 

(x2)  (x3) (x2) 
2(--I)2(Et+E "t) 2(-])2(Et+E "t) 3(-1)3 (E t+ E -t) 2(-1)3(Et+E -t) 

II II II II 
2ht  2Xt -3Xt -2Xt  

0 
(-1) (E t +E -t) 

II 
- X t  

Fig. 5 (a, b) Spectral alliance of aromatic and nonaromatic graphs; (b') polynomial evaluation of 
dinetwork (b) 

Reduction of each graph calls for identification of the spectrally significant 
structural elements discussed in the preceding section and supplementation of the 
frame ARN with the corresponding reduction component. Any A R N  can be 
written by inspection. It is advantageous to separately specify both totally 
symmetric and non-totally symmetric constituents. From each of these we are able 
to deduce distinct cosubspectral relations, which may be either intrafamily or 
interfamily in nature. In many cases the reductions may be made to pertain to 
graphs homologous with those presented by simple adjustment of the n 1/2 edge 
weight; we must be judicious in these generalizations, however. 
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GRAPH Zn ARN Al(t=O) t#O 

,~o: D3 ( )`3-x2-5)`+3)()`+ 1) X3-3).- • 
3AI +Az+3E 

(o,, ~> ~r ~ .... 

)`3- 3)`-- )`t 

(d) 

).3 _ >,2 )`t- 3)` - 2  

( f )  ~[;7v,~_ 

~ Xt 

• •  

x'~7 
X 3 -X 2 x t - 3 x - 2  

X 3 - 3 k - ( 2 + x t )  
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Table 2 (Cont.) 

GRAPH Z n ARN ~,l(t=C)) t :#0 

(g) V 
X3-X(2 + X2)-2 Xt 

Jn:3 {3,1,-22} Jn=3{ 12'-~} 

(h) 

X 3 -  X(4*  >'t)-( Xt + X2t) 

(i) X 3 -X2(2X t) + X(X~-3) 
+()'t -2) 

(k) 
�9 

X 3 -3X(2+ Xt) - ( 2 +  Xt )z 

(m) 

( -1 )  t 

X~ - X ( - l ) t - ( 2 + X t )  

In, ~I ~ol 
(-])t 

0 
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A few remarks on specific Table 2 graphs are appropriate. Z3 reduction of the 
parent graph (a) may be compared with Streitwieser's exposition [20] of D3- 
adapted basis functions. In (b) both motif edges joining third order orbits to 
invariant vertices receive a 31/2 weight. The An., loops in (d) and (e) are associated 
with C3 subgraphs. The graph (g) is a Z3 conformer of the Petersen graph, to be 
discussed again later. The original ARN complex edges are supplemented by an 
oppositely directed, conjugately weighted pair. This is mandated by the presence 
of an edge joining the indicated subgraph to its clockwise neighbor at 2~-/3. The 
resultant is a symmetric edge of weight A3,t. Graphs (1)-(n) are required to probe 

i the effect of intraorbit edges between viq and Vq+,,/2. Matrix element calculation 
occasions a network loop of weight (-1) t. 

T ( s )  The star graph KI,~ = K1 + / ( .  and its uniform subdivisions ~1, .  are common 
constituents of larger graphs. Their wreath automorphism groups E •  
S~[Em](m = s + 1) are isomorphic to symmetric groups on n elements [10, 11]. 

n =6 

(O) K(1) (2) 
KI,6 1,6 KI,6 

m=l m=2 m=3 

j~ 

% 
1/2 

n p 

m 
(x n-l) 

=A 1 @ ~A 1 

Only the S, irreducible representations [n] and [ n -  1, 1] of dimension 1 and 
n - l ,  respectively, occur in the standard representation: @ ~  In]+ 

re-(s) m[n - 1 ,  1]. The Pm graph eigenvalues have multiplicity n - 1  in the ~ 1,, spec- 
trum. As discussed elsewhere, exact solution of the A 1 network is possible only for 
the trivial cases n = 1 or 2; the general characteristic polynomial is ~b(P,,+0 + 
(1-n)~b(P,~_l). The spectrum of the star is {+n 1/2, 0 ~-1} [15,21]. Bipartite 
reduction is used to advantage in lowering the degree of algebraic expressions. 
Thus, for s = 1 we find 5e2[K]l,)] = {oW(K,) + 2, 0}. Spectra of graphs of the general 
formula below are also available on this basis. 
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Compound star-like graphs such as the one shown below are evaluated by initially 
regarding one subgraph as fixed. Table 3 features a selection of structures 
containing invariant subgraphs and star-like subconfigurations. The t # 0  

- t , .  . . . .  

Table 3. Reduction of star subgraph systems 

GRAPH ARN 

5 

(b) - -~ % 

(c) " - " ~  

.,'E 

..,E 

n n I~ 

(d) ~ .nl/~ 

(e) 
\ 
/ 

(f) 
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GRAPH ARN 

(g) . ~ } n  

(h) 

E x Sn[S2] 

(i) + 
S 2 x S n 

/ 
nl/2Vnl/2 U 

•: {1/2 [1 +- (1+8n)1/2];-1} x n-l) 

n l / ~  1/2 U �9 

(x n- l )  

(J) 

(k) 

(i) 

 m)n 
m 

G 

G= 

m 

n1/2~n1/2 

l 
ml/2 

~kn,t 

ni12 
G * >G (t#O) 

2 2 (x n-l) 

l ' 
z~2  
.,z 

j :  {,.~ [(..~ ); ( . L z o .  9)"~]., } 
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I V l = n = u + v + 2  

.1/Z , 1/2 

u112- 
u = = v + l  

Xa-X (u+v+l)+uv 

x(u+v-2) 

R. A. Davidson 

n = x + y + 3  

xl /2 y l / 2  
U �9 

x ( x + y - 2 )  

x + l =  = y + l  U ~ 

k 2 - k ( x  +y+2)  + (xy + x+y )  

uv = x y + x + y  

( n - v - 2 ) v =  ( n - y - 3 ) ( y + ] ) + y  

n 

8 
11 
14 

n = 5 + 3 k  

v y = v + l  

3 4 
5 6 
7 8 

y = v + l  
> 2 n = 3 v + 7  

n=11 

Fig. 6. Construction of two cospectral tree families 

networks are obtained from A1 by deleting the subgraph containing the prom- 
inent invariant vertex which is remote from the nl/2 edge. In (a, b), (c, d), and 
(h, i), we have examples of A 1 cosubspectral graph pairs. Graph (f) consists (in 
molecular terms) of nested rotor subsystems, i.e. rotors of order m contained 
within rotors of order n. Families (h) and (j) were mentioned in the early report of 
Collatz and Sinogowitz [21]. The reduction of graphs of general structure (1) 
manifests the subgraph G. Triphenylmethyl is a celebrated representative of this 
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family; for n =3  the formula given delivers its spectrum as {[+(4+31/2) 1/2, 
+1, 0]t=o[+l 4, +22],=1.2}. 

Mowshowitz [22] first proved that there exist infinitely many pairs of cospectral 
trees. Fig. 6 employs cooperative automorphism and bipartite reduction to effect a 
simplified proof of his result. Equating coefficients of the two BRN polynomials 
and arbitrarily setting y = v + 1, integral solutions require that n = 5 + 3k, k -> 1. 

3.2. Families of One-Orbit Graphs 

Graphs discussed to this point have been relatively simple, in the sense that 
connections between successive monomer subgraphs are few in number and of an 
easily deciphered character. Structures are now undertaken consisting of simple 
circuits which are crosslinked or chorded, i.e. vertices are joined in some repeti- 
tious fashion to others which are remote neighbors on the original cycle [23]. 
Multi-orbit graphs illustrating these somewhat more complex features are consi- 
dered also. Spectral analysis finds that many families distinguished in graph theory 
have a common basis in the eigenvalues of circuits. Until now these relationships 
have been at best understood on an imprecise, intuitive level. 

First we wish to deal with the prism (Prn = Cn • C2) and antiprism/Srn families 
(Fig. 7). The prism spectrum derived from the reduction network is St(C,)+ 
St(C2), in agreement with the general graph product formula [14]. When n is even, 
a hamiltonian cycle can be displayed (a'), and automorphism reduction of this 
conformation takes a somewhat different, though spectrally equivalent, form. In 
algebraic manipulations the relations below are often useful. Bipartite reduction 
of even [n]prisms leads to antiprism-like networks of half the cycle 

St(C./2) n even, 
[._J an 2, = St2(C,) = St(C,/2) + 2 
t ' St(Cn) n odd, 

order. This network spectrum is the square of the corresponding prism spectrum. 

Several expressions are derived for the [n]antiprism (b), depending on the 
conformation being entertained. The last formula from the single orbit represen- 
tation was derived by Rutherford [24] using matrix algebraic methods. The 
smallest antiprism is the octahedron, K2,2,2, whose spectrum is calculated 
explicitly. 

K2,2,2 

St(C3) = {2, -12} St(C6) = {2, 12, -12, -2} 

An,t + (An,t + 2) 1/2 Am,t + Am/2,t 

n = 3  2+4a /2=4 ,  0 m = 6  2 + 2 = 4  

-1  + 11/2 --- -22, 02 1 + (-1) = 02 

- 1  + (-1) = -22 

- 2 + 2 = 0  
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(a) �9 
Dnh 

o o 

Xn,t Xn,t 

Ohn,t +I 

(o') [ ~  

n even 

0 ~, n,t -I 

5•5 
3 

2 = 

l' 
2Et 

5 + ,k,n 12,t c ~ c )  3+Xn/2,1 
~:{(3 + Xn/2, l ) +- 2 (2 + hn/z,t)I/2 } 

Et + E2t 

+ 1] 1/2 ,~: { + [(Xn,Zt +2)+ 2Xn,t } 
=-+ (Xn,t +I) 

(b) �9 
_Dnd 

Xn, t ~ hn, t 
,~: { hn,t-+(hn,t +2) 1/z } 

Fig. 7. Reduction of prisms and antiprisms 

l 
Q~ 

w =hm,  t + hm,2t 

~: = Xm, t + Xm/2, t 

r 2tw" 4trr 
= 2LCOS~+COS m 

: (Xm, t + I/2)2--9/4 

Interestingly, the antiprism analysis is quite independent of the two C, subgraphs 
contained within C,,=2,, i.e. the spectral expression pertains as well to odd 
peripheral cycles bearing vivi+2 crosslinking edges. 

�9 
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The reduction network makes evident that only the localized nature of the 
crosslinking edges is relevant to the graph spectrum. Ks (not shown) is the first 
member of the odd series. 

K~ (-r)--ff-~- (-~-) A5,t+As,2t=2c~176 
(r- 1 ) ~ ( ~ - -  1) t = O  2(2 cos 0 ) = 4  

C, t#O ( r - 1 ) + ( - r ) = ( - z ) + ( r - 1 ) = - i  

Special cases arise whenever there is deviation from an established structural 
pattern. For vivi+2 edges such a singularity occurs only at the trivial m = 4 cycle. 

These considerations extend easily to linkages of more remote vertices, illustrated 
in Fig. 8. The reader may agree that direct spectral computation of these fairly 
complex structures or study of their adjacency matrix properties would suffer 
severely by comparison with network analysis. Of course we now know that it is 
the symmetry of the graph rather than its structural intricacy which decides the 
order and difficulty of the spectral problem. Fig. 8 portends several topics for 
closer inquiry. Thus, M6bius ladder graphs appear as members of the various 
series, and these are now isolated as a distinct class. See Fig. 9. Even ring ladders 
consist of [n ]circuits and n/2 edges l)iUi+n/2, while odd ladders contain the n edges 
Uil) i+(n-1)/2. 

The essential structural features of both subfamilies were focused on in Sect. 2, 
and the present results are identical with those given by Schwenk [14]. Bipartite 
reduction of even M4q+a M6bius ladders induces odd M2q+l M/Sbius ladder-like 
networks whose spectra are determined in a similar fashion. 

(Cl) v i vi+3:  (@) �9 �9 
n=6 n=8 n=9 ~/ /  

kn, t + kn,3t 
Q 

| @... 
n =8 n =9 ~ &  n= 10 

kn, t + kn,4t 
Q 

(b) vi vi+4 : 

Fig. 8. Z .  Reduction of crosslinked circuits 
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@ | 
n =2(2q +l) n = 2(2q)  

Mn, n even 

:3 Xn,t + "k n,nt/2 

3 3 ,~' {Xn,t +(-,)t} 
~ = ~  

rn = n/2 

3+ Xm, t + 2 Xm,( rn_ l ) t /2  

O 

@ 
Mn, n odd 

Xn, t + Xn,(n_l)t/2 
Q 

FXn, t + 2cos 2 ( - ~  I tT"r 
n / 

d:j =x0,t +(-u t z cos~ 

{ = hn, t + (-1)t kn,t/2 

Fig. 9. Automorphism and bipartite reduction of M/Sbius ladders 

R. A. Davidson 

The  c o m p l e t e  g raphs  K , ,  whe re in  all ver t ices  a re  nea re s t  ne ighbors ,  a re  the  next  
fami ly  to be  d e t e r m i n e d  (Fig. 10). The  r e p r e s e n t a t i o n  r educ t ion  u n d e r  S ,  is s imply  
9 0 =  [n]  + In - 1 ,  1]. Ca lcu la t ion  of  the  ma t r ix  e l e m e n t  p r o c e e d s  as fol lows:  

A =<u~')lAlu~')>= - '  ~' A n <2 ~ v ~ l A I 2  ~'v~> 

= n - 1 ( 2  kt �9 v~lY ,~' ( 2 v~)> 

= n - l ( ~  kt Iv- kt 
E Vk]2., E 2 Vk:t:i) 

i 

-- 1 kt  E kt  

i = 1  

~" An , t " l -  A n , 2 t  + A n , 3 t  "t- " . . ..l_A n , ( n - Z ) t / e  +(-1)' 
}t n , (n--1) t /2  

n even  

n odd .  

T h e  final resul t  cou ld  have  been  set  down  direct ly .  W h e n  t = 0 the  e igenva lue  is 
n - 1 = 2(n - 2 ) / 2  + i = 2(n - 1) /2 .  F o r  the  r ema in ing  roo ts  we e m p l o y  the  iden-  
t i ty  [25] Y~ =a COS 2 k x  = cos (a  + b ) x  �9 sin ( - a  + b + 1)x /s in  x wi th  x = tTr /n .  Some  
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0 0 
K8 K 7 

0 ~k Xn, kt 

J:(Kn):{n-],-1 n-l} 
Fig. 1O. Reduction of complete graphs 

t r igonometr ic  manipula t ion yields the wel l -known value ( - 1 )  for all 

n even, t odd  h = 0 + ( - 1 ) = - 1  

n even, t even h = - 2 + ( + 1 ) =  - 1  

n odd  A = - 1  

n and t > 0  [14, 15]. 
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The comple te  bigraphs [14, 15] K. . .  of Fig. 11 are drawn with a per ipheral  rn = 2n 
cycle having each vertex of one  color class adjacent  to the n vertices of the o ther  
located at + 2 ~ ( 2 q  + 1)/m. The spect rum is directly found  to be 

5~(K. . ) :  h., t + h,. 3, +" �9 ' + '~ m,(.-1), n even, 
' " " hm,(.-Z~r+(--1) r n odd. 

�9 G 0 
Kn,n: K3,3 K4,4 K6,6 K7,7 

(rn = 2n) (Repeat Unit) 

n 

n n ~ n n  ~ Xm,kt 
k odd 

. 0 
Kn(n) �9 (n- I )  K n (m= 2n) 

Fig. 11. Reduction of complete bigraphs, Kn,n 
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When t = 0, n the eigenvalues are respectively 2(n/2) = 2(n - 1)/2 + 1 = n and 
- 2 ( n / 2 ) = - 2 ( n - 1 ) / 2 - 1 = - n .  Presumably, cosine summation with an odd 
argument yields the complementary zero eigenvalues. Bipartite reduction of K, . ,  
creates the interesting complete network Kn (n) with both loop and link edges of 
weight n. 

Graphs (c)-(h) of Fig. 12 feature exterior and interior circuits which are mutually 
out of phase, i.e. they are star polygonal isomers of the corresponding [n]prisms. 
In (a) and (b) we demonstrate that the spectrum of an isolated circuit is invariant 
under conformational reorientation: modulo n, the same cosine arguments are 
encountered as t runs its course, though the order will vary. When two or more 
terms . t . . t  + A,,qt are combined, however, the resultant is distinctive for each q. The 
cubic Petersen graph [26] was displayed in Table 2(g) with a threefold rotational 
axis (i.e. permutation cycles of length three); it is more economically treated in 
Fig. 12(c) in the higher order  D5 conformation. The principle of focusing on the 
maximal order  subgroup, or more exactly, on an axial subgroup possessing a 

(a) n=7 (b) n =8 (c) n =5 (d)n =6 (e) n =7 
L(K5) , Petersen 

~{(3,1)(~,-2)'} 
\ 

kn ,2 t  kn,3t  kn,2t  kn, t  
Q Q 

J(Cn) J(Cn) <~:{1/2[(kt + X2 I )+_{ (X t - -X2 t )2+4} I /~ }  

( f)  (g) (h) Desorgues - Levi 

( - l } t  ~.n,t Xn,3t Xn,t 

8 -Coge  
Levi 

(i) 

(-l)t 

X10,31 X I0, t 

•215 [xt+ x3t + (-l)t] 

+k' [ktk3t  + ( - l ) t  (k t + k3t)-2 ] 

+ IX t + X3t - ( -1 ) tX tX3t  ] 

,~: {*_(3,2,0)(o, • 2) 8} 
Fig, 12. Interpenetrating circuits 
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GRAPH ARN 

(_])t kn,t 

oP-,o 
Xn.2t Xn,t 

(c) 
G 

~z< Dn 

> J g  o Xn/~.t 

(d) 
Ezt 

Xn,t 
.~: {1/2 [X t-+(k;~ + 4 XZt +8)1/2]} 

(e) 

~t 

(x ) (x2-4 -x t  -xat) 

d~'~ = 2A 1 +E+ 2F 2 

j ~(uj 

(f ') 

D__.2 <_Td 

u C] 
0 
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GRAPH ARN 

~'~ = AI + E + F I + 2F 2 

( g ' ) ~  

D4 

(•n,t 
Jn:s: {( s,_+ 2,-1)( -* 2,o,-1) 2 } 

( •  
-1)t 

,k3-,kz(-l)t- X(4+X t) +(2+Xt)((-I)t-l) 
=~n:4 :{(3,0,-2)(-+2,-1)Z(2, 0-1)} 

(h) Cuboctahedron (O h) 

Xn~ 
./-~ (1+ ~ )  

> Xn,t U QXn,t 
./~ (I +E-t) 

Xn,t ~n :4 : {4, 22,0,_24} ,,~: {+_2,02} 

(i) @ 
L(Q 3) 

kn,t kn,t 
J~ (1 +Et) 

U O'kn, t 

Xn,t Xn,t Xn,t d-z (1+E-t) 

2 I} 1/2 n=4 ~ : { l / 2 [ l t  +{X t +8(Xt+2 ] Xn,t} 

( i ' )  
(-1) t ./~2 C1 + El) C-1)t--1 

(-1)t d'a (I§ 

n =4 •: {l/z [(-1) t +1] -+ [8Xt. +18 +2(-1)t']112,(-1) t -1}  
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minimal number of orbits, is a general one. Any graph analyzed in previous 
studies with respect to Z2 can now be reconsidered with respect to possible higher 
order cyclic groups. The noteworthy spectral features of Cs and its multiples in (c), 
(h), and (i) derive from properties of the classical number r = 1/2(51/2+ 1)= 
1.618033 . . . .  Thus, the general reduction formula for alternately linked interior 
vertices is easily evaluated to yield the Petersen spectrum. Its relation to the 
dodecahedron and Desargues-Levi eigenvalues was described in Part 2 of this 
series. The spectra of (f)-(h) involve the same quadratic formula as (c)-(e) with the 
parameter A.,q,. Compare the [7]prism with (e) and (g). Ten-fold cyclic symmetry 
in the cubic bigraphs (h) [27] and (i) and the 7 recurrences favor extremely simple, 
highly degenerate, paired spectra. Depiction and discussion of the 5-unitransitive 
Levi graph may be found in Refs. 28 and 29. Cubic integral graphs are rationally 
and exhaustively constructed by Schwenk [26]. All structures exhibit very high 
symmetry, and it may now be possible to use this characteristic in independent 
proofs of his or similar graph theorems. 

This Section concludes with a miscellaneous collection of graphs emphasizing 
remote monomer interaction and novel structural effects. Graph (c) of Table 4 is 
taken in a D,  conformation having n/2 invariant vertices. It is uncertain whether 
direct reduction modulo subgroups above Z2 is possible in these systems. Graph 

Td 
I~z4 I~,z3 
0X4, t +(-1)t ~ o 2  

d:{3,-l~} J:{3,-i} 

~ ~  = AI+ F 2 

Zd A! F 2 

A E B 2A E 

~4 ~3 

U 0 X3,t 
( t :1 ,2)  

J:{-12 } 

+I +5 

+I -I 

X=3 k = - I  
A 1 F?. 

Fig. 13. Spectral reduction of the tetrahedron graph, representation correlation, and depiction 
of eigenvectors 
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(d) was discussed by Weimin [5], and (e) has a K2,2,2(4) bipartite reduction 
network (Fig. 18 of Ref. 1). The adamantane graph is reduced with respect to both 
Z3 (f) and Z2 (f'). Similarly, the truncated tetrahedron is reduced via Z 3 (g) and Z4 
(g'). The juxtaposition of eigenvalues associated with each subgroup irreducible 
representation should be noted. The cospectral pair (i), (i') [30] affirm that 
cospectral graphs need not be coreducible. Conceivably, other conformers or 
monomer choices would be coreducible, though there is no reason that they must 
be. 

3.3. Platonic Eigenvalues; Polyhedral Spectra 

Graphs of the five Platonic polyhedra are among the most interesting from the 
standpoint of symmetry. Figs. 13-17 treat Z ,  automorphism reduction of the 
tetrahedron (K4), cube (03 = C4 x C2), octahedron (K2,2,2), dodecahedron, and 
icosahedron, respectively. In addition to the reduction networks and spectra we 
show the irreducible representations occurring in these graphs, the representation 
correlation between 6 e~ and Z,, and diagrams (or equivalent specification) of 
typical eigenvectors associated with each eigenvalue. A complete spectral 
characterization of any graph would include these features. The procedure for 
forming eigenvectors is discussed by Collatz and Sinogowitz [21 ] and Streitwieser 
[20]. For the Platonic graphs, irreducible representations of the full group appear 

7 8 3 3 4 

~ 5  2 4 7 8 
z 8 6 8 6 5 

~ . . - x  6 6 5 5 2 I 

--Oh 

7 
QX4.t+l 0),4,t-1 3 2 3 

{3,12-1} {I,-r2,-3} z ~ _ z  
3 3 

~:{(3,1) (+1) z ( - I , -3 ) }  K4(3). K4 

,/~'*(Oh) : Alg + A2u + F2g § Flu 

Oh IA 1 1F. IF2a 1A2. 

2A 2E 2B 

+1 +1 -3 -I +3 -1 
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+1 -1 +2 
X=4 X =0 X=-2 

A1O F~u .E o 

Fig. 15. Octahedron spectral properties 

at most once, and it is not particularly difficult to carry through the required 
manipulations. When a higher dimensional representation has a multiplicity of 
two or more, however, direct eigenvector construction can be extremely tedious 
(see, for example, Sect. 3.9 of Ref. 20). Observe that previously introduced 
notation clearly differentiates eigenvector components at a vertex from abbre- 
viated representation of vertex loop weights in bipartite reduction networks. 

The (non-Platonic) truncated icosahedron graph, whose Schlegel map appears in 
Fig. 18, corresponds to the hypothetical molecule C60, a spheroidal, polyhedral 
oligomer of carbon and formally a trimer of bowl-shaped corannulene. 
Ordinarily, manual Hiickel calculation of the electronic structure of such a large 
species would be considered prohibitive. Zs reduction affords a I VI = 12 network 
whose A x graph can be reduced to two quartic and two quadratic equations. Two 
twelfth order polynomials, both doubly degenerate, remain. Successive Z2 
reductions of the [VI = 60 graph provide equations of still lower degree, however. 
Z2 irreducible components I and I V  are easily disposed of by Z3 reduction. The 
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Gu,%=0 u=[2(i-20) - (3+4+6+7+9+10) + (11+12+14+15+17+18)] 

Gg,%=-2 u_=[6(i+20) - 4(2+5+8+13+16+19) + (3+4+6+7+9+10+11+12+14+15+17+18)] 

F2u , ~=-5 I/2 u= [3(1-20) - (21"-1) (2+5+8-13-16-19)+(3+4+6+7+9+10-11-12-14-15-17-18)] 

Fig. 16. Dodecahedron spectral properties 
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Fig. 17. Icosahedron spectral properties 
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Fig. 18. Z2 automorphism reduction of the truncated icosahedron, Iwl = 60 
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Fig. 19. Hiickel orbital energies of truncated icosahedrane, C60 

spectra of the multiply occurring networks/ /and III  are found by calculator to be 

~2.757, 1.820, 1.562= 1/2(-1+171/2), 0.618, -0.139 / 
(II): / -1.438, -1.618, -2.561 = - 1 / 2 ( 1 +  171/2) J 

I2.303 = 1/2(1+ 131/2), 12, -O.382, -1.303 = 1 (III): 
I 1/2(1-131/2), -2,  -2.618 = -1/2(3 + 51/2 ) J" 

By assembling all these subspectra we arrive at the remarkable ELD of Fig. 19. 
The closed electronic shell and sizeable HOMO-LUMO gap are common 
characteristics of aromatic stability. More refined calculations and estimates of 
convex ring-distortion strain are warranted. Should such structures or their higher 
homologs ever be rationally synthesized or obtained by pyrolytic routes from 
carbon polymers, they would be the first manifestations of authentic, discrete, 
three-dimensional aromaticity. Stable cationic and anionic polyhedral C, species 
might also be produced under appropriate conditions. 

4.  C o n c l u s i o n  

We have seen how graphical structures in their various conformations may be 
conceived as polymers of simple subgraphs and how this view facilitates eigen- 
value computation. Spectra are decomposed into subsets corresponding to irre- 
ducible representations of cyclic groups. The t values of the subspectral networks 
serve as "quantum numbers" identifying eigenvalues with respect to a particular 
subgroup. Graphs of ~-hydrocarbons are usually of such simple construction as to 
permit instant evaluation of the irreducible networks. 

The principles of Z,  automorphism reduction of one-dimensional cyclopolymers 
extend easily to cyclic two-dimensional arrays, i.e., monomers embedded on a 
torus. The spectrum of a toroidally embedded quadratic lattice (with even 
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diameters) contains a planar quadratic lattice as a subspectrum, since antisym- 
metry planes cut out this fragment. The implication (later qualified) of Heil- 
bronner's discussion [4] is that families of condensed benzenoid systems [31] 
derive analogously from toroidally embedded hexagonal cell precursors. In fact, 
only one of the two necessary types of antisymmetric reduction leads to loopfree 
graphs, and no relation is found between planar aromatic hydrocarbon spectra 
and toroidal-based cyclopolymer analogs. 

Acknowledgment. Discussion of the C6o polyhedron with T. Fukunaga of this department is acknow- 
ledged. All figures and tables in this series have been drawn by D. M. Tinker, whose assistance is 
appreciated. 

Addendum 

Since completion of this manuscript, three additional papers from the chemical literature devoted to 
characteristic equation factorization have come to our attention: B. J. McClelland, J. Chem. Soc., 
Faraday Trans. II 70, 1453 (1974); R. B. King, Theoret. Chim. Acta (Berl.) 44, 223 (1977); and 
S. S. D'Amato, Molec. Phys. 37, 1363 (1979). 
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